## Signals and Systems E-623

## Lecture 8

Using Matlab/Simulink for Solving Ordinary Differential Equations

Dr.Eng. Basem ElHalawany

## Using Matlab for Solving Ordinary Differential Equations

$>$ The built-in matlab function "ode45" is used t solve first-order ordinary differential equations

$$
\frac{d x}{d t}=f(x, t)
$$

Example: $\quad \frac{d x}{d t}=3 e^{-t}$ with an initial conditions $x(0)=0$
$>$ You need to know the syntax of using "ode45":

$$
[t, x]=o d e 45\left(@ r h s, t, i n i t i a l \_x\right) \text {; }
$$

## Solving $1^{\text {st }}$ Ordinary Differential Equations

$>$ You need to create a function carrying the right-hand side (rhs):

## function $d x d t=r h s(t, x)$ $d x d t=3^{*} \exp (-t) ;$ <br> end

$>$ You need to create a function or m-file to call the ode45 to solve:
\% SOLVE $\mathrm{dx} / \mathrm{dt}=-3 \exp (-\mathrm{t})$.
\% initial conditions: $x(0)=0$
$\mathrm{t}=0$ : $0.001: 5$; \% time scalex
initial_x=0;
[ $\mathrm{t}, \mathrm{x}$ ]=ode45( @rhs, t , initial_x);
plot(t,x) ;
xlabel('t'); ylabel('x');


## Solving higher Ordinary Differential Equations

$>$ You need to convert the higher-order ODE to a group of $1^{\text {st }}$ order ODE

## Example:

$$
\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}-4 x(t)=\sin (10 t)
$$

$\checkmark$ Recall that an $n$-order ODE can be converted to $n$ first order ODE's.
$>$ Introduce 2 new state variables ( $\mathrm{x} 1, \mathrm{x} 2$ ) and carry the following derivation:

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
x_{1}=x \\
x_{2}=x^{\prime}
\end{array}\right\} \xrightarrow{\text { take derivative }} \begin{array}{l}
x_{1}^{\prime}=x^{\prime} \\
x_{2}^{\prime}=x^{\prime \prime}
\end{array}\right\} \\
& \left.\qquad \begin{array}{l}
\text { do replacement } \\
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=-5 x^{\prime}+4 x+\sin (10 t)
\end{array}\right\} \rightarrow \\
& \left.\begin{array}{l}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=-5 x_{2}+4 x_{1}+\sin (10 t)
\end{array}\right\} \quad \begin{array}{c}
2 \\
1^{\text {st }} \text { order ODES }
\end{array}
\end{aligned}
$$

## Solving higher Ordinary Differential Equations

$\left.\begin{array}{c|l}2 & \begin{array}{l}x_{1}^{\prime}=x_{2} \\ 1^{\text {st }} \operatorname{order~ODEs~}\end{array} \\ x_{2}^{\prime}=-5 x_{2}+4 x_{1}+\sin (10 t)\end{array}\right\}$
$>$ Now ode45 can be used to solve this in the same way as with the first example.
> The Only difference is that now an array is used instead of a scalar.
$>$ You need to create a function carrying the right-hand side (rhs):

```
function dxdt=rhs (t,x)
    dxdt_1 = x (2);
    dxdt_2 = -5*x(2) + 4*x(1) + sin(10*t);
    dxdt=[dxdt_1; dxdt_2];
end
```

$>$ You need to create a function or m-file to call the ode45 to solve:

```
t=0:0.001:3; 多 time scale
initial_x =0;
initial_dxdt = 0;
[t,x]=ode45( Erhs, t, [initial_x initial_dxdt]);
plot(t,x (:,1));
xlabel('t'); ylabel('x');
```



## Using Simulink for solving Ordinary Differential Equations

$>$ Example : Simulate the $1^{\text {st }}$ order D.E with an input of one-second pulse

$$
\frac{d y}{d t}+2 y=u(t)-u(t-1)
$$

$>$ Write the equation with the $1^{\text {st }}$ order term in the L.H.S.
The differential equation above can be written as:

$$
\frac{d y}{d t}=-2 y+u(t)-u(t-1)=-2 y+p(t)
$$

where $p(t)$ is the one second pulse.
> The right hand side of this equation can be modeled in Simulink

## Using Simulink for solving

> Drag the Pulse Generator from the Source sub-library into the model window.
$>$ The subtraction block and the gain block are found in the Math Operations sub-library.
> Double click the Pulse Generator and modify the parameters as shown in figure


## Using Simulink for solving Ordinary Differential Equations

$>$ Change the simulation time in the configuration parameters to five seconds and simulate the system.
$>$ Specify fixed-step samples of 0.01 seconds.


## Using Simulink for solving Ordinary Differential Equations

$>$ If the input to the gain block is y , then the output of the subtractor is $\mathrm{dy} / \mathrm{dt}$.
$>$ By passing this output through an integrator, the input y is found.
$>$ Click once on the "Sinks" sub-library in the left part of the Library Browser and Click and drag the "Scope" icon to the model window
$>$ Open the Continuous sub-library. Drag the Integrator block into the model

$\checkmark$ The labels on the wires are inserted by double clicking on the wires and typing in the text.
$\checkmark$ The initial condition of " $y$ " could be added by double-clicking the integrator

## Using Simulink for solving Ordinary Differential Equations

$>$ Simulate the circuit for 10 seconds.
$>$ The output shown in figure 18 is obtained on the scope.


## Using Simulink for $\mathbf{2}^{\text {nd }}$ order ODE

## Example:

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=\cos 2 t
$$

$>$ Write the equation with the $2^{\text {nd }}$ order term in the L.H.S.

$$
\frac{d^{2} y}{d t^{2}}=-3 \frac{d y}{d t}-2 y+\cos 2 t
$$

> The right hand side of this equation can be modeled in Simulink

- In order to get the three input subtractor, use the two input subtractor selected above \& Double click on the block and change the "List of Signs" to: +--

> In order to get ( $\mathrm{y}, \mathrm{dy} / \mathrm{dt}$ ) we need to integrate the output of the summer twice.

$\checkmark$ The second integrator outputs the value of y . Thus, the default initial condition of zero is correct.
$\checkmark$ The first integrator outputs dy/dt. Double click on the first integrator and change the initial condition to one.


## $\checkmark$ Simulate for 10 seconds



